top of page

原著論文

 

[26] Mamada S, Niwa K, Toyoshima S, Seto Y, Ogawa N, Stereoselective Synthesis of Volicitin and 9-D1-Volicitin, Synlett, in press

 

[25] Mashiguchi K, Morita R, Tanaka K, Kodama K, Kameoka H, Kyozuka J, Seto Y, Yamaguchi S. Activation of Strigolactone Biosynthesis by the DWARF14-LIKE/KARRIKIN-INSENSITIVE2 Pathway in Mycorrhizal Angiosperms, but Not in Arabidopsis, a Non-mycorrhizal Plant. Plant Cell Physiol. 2023 Sep 15;64(9):1066-1078

[24] Kawada K, Saito T, Onoda S, Inayama T, Takahashi I, Seto Y, Nomura T, Sasaki Y, Asami T, Yajima S, Ito S. Synthesis of Carlactone Derivatives to Develop a Novel Inhibitor of Strigolactone Biosynthesis. ACS Omega. 2023 Apr 5;8(15):13855-13862

[23] Takei S, Uchiyama Y, Bürger M, Suzuki T, Okabe S, Chory J, Seto Y. A Divergent Clade KAI2 Protein in the Root Parasitic Plant Orobanche minor Is a Highly Sensitive Strigolactone Receptor and Is Involved in the Perception of Sesquiterpene Lactones. Plant Cell Physiol. 2023 Sep 15;64(9):996-1007

[22] Okabe S, Kitaoka K, Suzuki T, Kuruma M, Hagihara S, Yamaguchi S, Fukui K, Seto Y, desmethyl type germinone, a specific agonist for HTL/KAI2 receptor  induces the Arabidopsis germination ina gibberellin independent manner, Biochem. Biophys. Res. Commun., 649, 203, 110-117


[21] Mashiguchi K*, Seto Y*, Onozuka Y*, Suzuki S, Takemoto K, Wang Y, Dong L, Asami K, Noda R, Kisugi T, Kitaoka N, Akiyama K, Bouwmeester H, Yamaguchi S. A carlactonoic acid methyltransferase that contributes to the inhibition of shoot branching in Arabidopsis, Proc. Natl. Acad. Sci. USA, 119 (14), 2022 doi: 10.1073/pnas.2111565119. *=co-first author

[20] Suzuki T, Kuruma M,  Seto Y*, A series of new strigolactone analogs derived from cinnamic acid as seed germination inducers for root parasitic plants., Front. Plant Sci., in press

[19] Kuruma M., Suzuki T., Seto Y., Tryptophan derivatives regulate the seed germination and radicle growth of a root parasitic plant, Orobanche minor. Bioorg. & Med. Chem. Lett., 43, 128085, 2021

[18] Mori N, Sado A, Xie X, Yoneyama K, Asami K, Seto Y, Nomura T, Yamaguchi S, Yoneyama K, Akiyama K. Chemical identification of 18-hydroxycarlactonoic acid as an LjMAX1 product and in planta conversion of its methyl ester to canonical and non-canonical strigolactones in Lotus japonicus.
Phytochemistry. 2020 Mar 23;174:112349

[17] Yoshida S et al, Genome Sequence of Striga asiatica Provides Insight into the Evolution of Plant Parasitism, Current Biology, 2019 Sep 23;29(18):3041-3052

[16]Bürger M, Mashiguchi K, Lee HL, Nakano M, Takemoto K, Seto Y, Yamaguchi S, Chory J, (2019) Structuralbasis of karrikin and non-natural strigolactone perception in Physcomitrella patens, Cell Reports, 26 (4), 855-865

[15]Yasui R, Seto Y, Ito S, Kawada K, Itto-Nakama K, Mashiguchi K, Yamaguchi S, (2019) Chemical screening of novel strigolactone agonists that specifically interact with DWARF14 protein, Bioorg. Med. Chem. Lett., 29 (7), 938-942

[14] Seto Y, Yasui R, Kameoka H, Tamiru M, Cao M, Terauchi R, Sakurada A, Hirano R, Kisugi T, Hanada A, Umehara M, Seo E, Akiyama K, Burke J, Takeda-Kamiya N, Li W, Hirano Y, Hakoshima T, Mashiguthi K, Noel J, Kyozuka J, Yamaguchi S, Strigolactone perception and deactivation by a hydrolase receptor, DWARF14, Nat. Commun., 10 (1), 191

[13] Yao J, Mashiguchi K, Scaffidi A, Akatsu T, Melville KT, Morita R, Morimoto Y, Smith SM, Seto Y, Flematti GR, Yamaguchi S, Waters MT (2018) An allelic series at the KARRIKIN INSENSITIVE 2 locus of Arabidopsis thaliana decouples ligand hydrolysis and receptor degradation from downstream signalling. Plant J, 96 (1), 75-89

[12] Kuroha T, Nagai K, Gamuyao R, Wang RD, Furuta T, Nakamori M, Kitaoka T, Adachi K, Minami A, Mori Y, Mashiguchi K, Seto Y, Yamaguchi S, Kojima M, Sakakibara H, Wu J, Ebana K, Mitsuda N, Ohme-Takagi M, Yanagisawa S, Yamasaki M, Yokoyama R, Nishitani K, Mochizuki T, Tamiya G, McCouch RS, and Ashikari M (2018) Ethylene-Gibberellin Signaling Underlies Adaptation of Rice to Periodic Flooding. Science, 361, 181-186

[11] Brewer PB, Yoneyama K, Filardo F, Meyers E, Scaffidi A, Frickey T, Akiyama K, Seto Y, Dun EA, Cremer JE, Kerr SC, Waters MT, Flematti GR, Mason MG, Weiller G, Yamaguchi S, Nomura T, Smith SM, Yoneyama K, Beveridge CA (2016) LATERAL BRANCHING OXIDOREDUCTASE acts in the final stages of strigolactone biosynthesis in Arabidopsis. Proc Natl Acad Sci U S A 113 (22): 6301-6306

[10] Umehara M, Cao M, Akiyama K, Akatsu T, Seto Y, Hanada A, Li W, Takeda-Kamiya N, Morimoto Y, Yamaguchi S (2015) Structural Requirements of Strigolactones for Shoot Branching Inhibition in Rice and Arabidopsis. Plant Cell Physiol 56 (6): 1059-1072

[9] Ohashi M, Ishiyama K, Kusano M, Fukushima A, Kojima S, Hanada A, Kanno K, Hayakawa T, Seto Y, Kyozuka J, Yamaguchi S, Yamaya T (2015) Lack of cytosolic glutamine synthetase1;2 in vascular tissues of axillary buds causes severe reduction in their outgrowth and disorder of metabolic balance in rice seedlings. Plant J 81 (2): 347-356

[8] Abe S, Sado A, Tanaka K, Kisugi T, Asami K, Ota S, Kim HI, Yoneyama K, Xie X, Ohnishi T, Seto Y, Yamaguchi S, Akiyama K, Yoneyama K, Nomura T (2014) Carlactone is converted to carlactonoic acid by MAX1 in Arabidopsis and its methyl ester can directly interact with AtD14 in vitro. Proc Natl Acad Sci U S A 111 (50): 18084-18089

[7] Seto Y, Sado A, Asami K, Hanada A, Umehara M, Akiyama K, Yamaguchi S (2014) Carlactone is an endogenous biosynthetic precursor for strigolactones. Proc Natl Acad Sci U S A 111 (4): 1640-1645

[6] Kagiyama M, Hirano Y, Mori T, Kim SY, Kyozuka J, Seto Y, Yamaguchi S, Hakoshima T (2013) Structures of D14 and D14L in the strigolactone and karrikin signaling pathways. Genes Cells 18 (2): 147-160

[5] Seto Y, Hamada S, Ito H, Masuta C, Matsui H, Nabeta K, Matsuura H (2011) Tobacco salicylic acid glucosyltransferase is active toward tuberonic acid (12-hydroxyjasmonic acid) and is induced by mechanical wounding stress. Biosci Biotechnol Biochem 75 (12): 2316-2320

[4] Sato C, Seto Y, Nabeta K, Matsuura H (2009) Kinetics of the accumulation of jasmonic acid and its derivatives in systemic leaves of tobacco (Nicotiana tabacum cv. Xanthi nc) and translocation of deuterium-labeled jasmonic acid from the wounding site to the systemic site. Biosci Biotechnol Biochem 73 (9): 1962-1970

[3] Seto Y, Hamada S, Matsuura H, Matsushige M, Satou C, Takahashi K, Masuta C, Ito H, Matsui H, Nabeta K (2009) Purification and cDNA cloning of a wound inducible glucosyltransferase active toward 12-hydroxy jasmonic acid. Phytochemistry 70 (3): 370-379

[2] Seto Y, Takahashi K, Matsuura H, Kogami Y, Yada H, Yoshihara T, Nabeta K (2007) Novel cyclic peptide, epichlicin, from the endophytic fungus, Epichloe typhina. Biosci Biotechnol Biochem 71 (6): 1470-1475(BBB論文賞受賞)

[1] Seto Y, Kogami Y, Shimanuki T, Takahashi K, Matsuura H, Yoshihara T (2005) Production of phleichrome by Cladosporium phlei as stimulated by diketopiperadines of Epichloe typhina. Biosci Biotechnol Biochem 69 (8): 1515-1519


英文総説

[8] Seto Y. Latest knowledge on strigolactone biosynthesis and perception. Biosci Biotechnol Biochem. 2023 Dec 19;88(1):1-7

[7] Nomura T, Seto Y, Kyozuka J. Unveiling the complexity of strigolactones: Exploring structural diversity, biosynthesis pathways and signaling mechanisms. J Exp Bot. 2023 Oct 25:erad412


[6] Takeuchi J, Fukui K, Seto Y, Takaoka Y, Okamoto M., Ligand-receptor interactions in plant hormone signaling. Plant J. 105(2):290-306, 2021 

[5] Mashiguchi K, Seto Y, Yamaguchi S., Strigolactone biosynthesis, transport and perception.,Plant J. 105(2):335-350, 2021

[4] Mindrebo JT, Nartey CM, Seto Y, Burkart MD, Noel JP (2016) Unveiling the functional diversity of the alpha/beta hydrolase superfamily in the plant kingdom. Curr Opin Struct Biol 41: 233-246

[3] Mitsumasu K, Seto Y, Yoshida S (2015) Apoplastic interactions between plants and plant root intruders. Front Plant Sci 6: 617

[2] Seto Y, Yamaguchi S (2014) Strigolactone biosynthesis and perception. Curr Opin Plant Biol 21: 1-6

[1] Seto Y, Kameoka H, Yamaguchi S, Kyozuka J (2012) Recent advances in strigolactone research: chemical and biological aspects. Plant Cell Physiol 53 (11): 1843-1853


和文総説
[8] 瀬戸義哉, 山口信次郎、ストリゴラクトンの受容:加水分解の役割は?植物の生長調節, 55: 110-115, 2020

[7] 安井令, 瀬戸義哉, 山口信次郎, 植物のストリゴラクトン信号伝達メカニズム, 化学と生物, 58: 673-680, 2020

[6] 瀬戸義哉(2018)カーラクトン類の代謝と受容に関する研究.植物の成長調節 53: 27-34

[5] 瀬戸義哉(2017)ストリゴラクトン生合成研究の最前線.化学と生物 55: 237-239

[4] 瀬戸義哉、山口信次郎(2016)ストリゴラクトンの生合成.植物の生長調節 51: 97-102

[3] 瀬戸義哉、山口信次郎(2015)アポプラスト内のシグナル分子の動きと働き.植物の生長調節 50: 70-75

[2] 瀬戸義哉、山口信次郎、秋山康紀(2014)ストリゴラクトンの生合成中間体カーラクトンの発見.バイオサイエンスとインダストリー 72: 315-316

[1] 山田雄介, 梅原三貴久, 瀬戸義哉 (2013)ストリゴラクトンの多様な生理作用と生合成.植物の生長調節 48: 148-153


研究費獲得状況

●科研費 挑戦的研究(萌芽)2024~2025 (研究代表者)

●科研費 基盤研究(B) 2022~2024 (研究代表者)

●JST 創発的研究支援事業 2022~2028(研究代表者)
●武田科学ライフサイエンス振興財団研究助成(研究代表者)
●野田産研研究助成(研究代表者)
●ホクト財団研究助成(研究代表者)
●山田科学振興財団研究助成(研究代表者)

●科研費 基盤研究(C)2019~2021
●加藤記念バイオサイエンス振興財団 研究助成金(研究代表者)
●三菱財団自然科学研究助成(研究代表者)
●杉山報公会研究助成金(研究代表者)

PUBLICATIONS

bottom of page